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Abstract

In an effort to provide a timely and reasonably accurate methodology for

determining C-130 intratheater airlift requirements, this research concentrated on a rough-

cut capacity approach using a straight forward linear programming spreadsheet model.  To

provide more detailed analysis, a more sophisticated linear program was investigated.  

Specifically, the spreadsheet model calculated the minimum number of C-130s

required to carry required cargo, passenger, and aeromedical loads based on user-defined

daily requirements.  For a given scenario, inputs include the daily requirements and the

expected capacity for C-130 aircraft, trucks, and 22-car trains.  Included in the capacity

inputs are the number of daily cycles or trips expected from a given mode of

transportation.  The model is automatically formulated based on these inputs and is solved

using a spreadsheet solver.  Graphical results are provided.  This spreadsheet model is

analyzed for a 20 day period, but any planning horizon can be used with modifications.

Since the spreadsheet does not perform a parametric analysis, the data used in the

spreadsheet formulation was input into the LINDO solver in order to perform a parametric

analysis.  The parametric analysis was then imported into a spreadsheet and graphed.  
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I.   Introduction

I.1.  General Issues

The Air Force faces a decision to replace its aging fleet of C-130 “E” model

aircraft with new C-130 “H2” and “J” models, institute service life extension programs

(SLEP) for the E models, or some combination of both the previous options.

Consequently, questions concerning the appropriate fleet size for the C-130 are being

revisited. An overall requirements study will recommend the number of replacement

aircraft the Air Force should procure based on a total required fleet size capable of

meeting future contingencies.  Air Combat Command (ACC) currently has responsibility

for managing the C-130 fleet and ensuring this fleet has the capability of handling any

contingency requiring intratheater airlift.  The motivation for this thesis centers around the

recent Department of Defense (DOD) policy to structure military forces to respond to two

major regional contingencies (MRC) simultaneously.  A classified Gulf War Air Power

Study addressed the “western”  MRC, but possesses no extensive analysis for the

“eastern” MRC.  In this light, HQ ACC needs an analysis of the “eastern” front to

complete its C-130 requirements study.  Based on the current world situation, this

translates to an examination of a Korean scenario.  (Stieven, 1995)

An idea of the organization and mission of intratheater forces can be found in Air

Force Doctrine Document 30 which addresses airlift operations.  The tasks of intratheater

airlift are described as follows:
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*  Deploy and redeploy forces within the AOR (Area of Responsibility).

*  Sustain deployed forces (both routine and combat sustainment).

*  Deliver combat forces directly into battle.

*  Force extraction from a combat environment.

*  Conduct aeromedical evacuation operations.

*  Augment strategic airlift forces when required.

*  Perform non-lethal air power tasks such as foreign humanitarian assistance, 

    leaflet drops, aerial spray, and fire fighting.

The use of intratheater airlift was instrumental in executing the wide flanking

maneuver into Iraq during the Gulf War.  This operation highlighted some primary

characteristics of intratheater airlift, such as a quick reaction capability and the ability to

operate from austere and unimproved landing zones (like sections of highway)  (AFDD

30, 1995:18).

A review of several relatively recent historical examples illustrate the possible

range in the size of potential deployments involving C-130 type aircraft.  In Operation

Desert Shield/Storm, the Air Force flew 46,500 intratheater sorties that moved 209,000

passengers and 300,000 tons of supplies.  More than 145 C-130 aircraft were deployed in

support of the operation.  These airlift assets provided logistical support, aeromedical

evacuation of the wounded, and battlefield mobility during the ground campaign.

Approximately 500 sorties per day were flown during the ground campaign

(Airpower,1991).  Although not used to capacity, 11,250 patient beds were established

through the deployment of 15 air transportable hospitals.  Total patient visits amounted to
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48,000 during the span of Operation Desert Shield/Storm  (Airpower, 1991). The amount

of personnel and materiel moved in the first month of the deployment gives an idea of the

size of the initial deployment.  Five fighter squadrons, an Airborne Warning and Control

System (AWACS) contingent, and part of the 82nd Airborne Infantry Division were

airlifted into the theater within the first five days.  Within 35 days, the Air Force had

deployed a fighter force into the Area of Operations (AO) that was the numerical equal of

the Iraqi air force of 750 combat aircraft  (Airpower, 1991).   A review of the Korean

order of battle for ground and air assets should give an indication of the size of any

deployment that must be handled by the Air Force intratheater network.

Recently, the US Army made III Corps (Fort Hood, Texas) responsible for a

Korean conflict as opposed to the I Corps. The primary units to deploy from III Corps

would be the helicopter and artillery brigades according to one of the scenarios considered

by the Army.  These units would support troops already positioned in Korea and were

chosen because they are relatively easy to airlift when compared to armored forces  (Cole,

1996:386-7).  The Assistant Secretary of Defense, Dr. Edward Warner, stated that the

primary objective of US policy in the defense of the Korean peninsula is to hold the city of

Seoul against a North Korean invasion, drive the opposing forces out of friendly territory,

and ultimately achieve a decisive victory.  He said the real challenge was to move in

overwhelming airpower and “some land forces”  (Warner, 1996).

Another recent example that highlights the low end of a possible contingency size

can be found at the aerial port of Taszar, Hungary.  This port operates as the US Army’s

premier logistics staging area for personnel and equipment going south to Bosnia-
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Herzegovina in support of Operation Joint Endeavor and the North Atlantic Treaty

Organization’s (NATO) Implementation Force.  Taszar has received more than 12,400

tons of cargo and 3,700 passengers from 11 December 1995 through 23 January 1996.

This movement has consisted primarily of US Army support equipment and vehicles.

(Ryder, 1996)

These operations constitute our most recent historical database to draw upon when

conducting mobility requirements analysis.  Our most recent experience with combat

operations in Korea is, of course, not recent (early 1950s).   Only large scale exercises,

such as Exercise Team Spirit, give us an illustration of how military airlift operations in

that region would be conducted.

The primary source of analytic results for ACC regarding the issue of intratheater

airlift requirements is the classified Mobility Requirements Study (MRS) Vol III.  The

MRS was conducted from 1991-1993.  This study was based on outputs from the

TACWAR and MIDAS models.  It calculated specific vehicle fleet requirements based

on a static list of airlift movement requirements or with time-phased force deployment

data (TPFDD).  This data is translated into daily tonnage numbers once units arrive in

theater.  The system combining TACWAR and MIDAS is called SUMMIT and is a

simulation designed for analysis of given fleet sizes.  The Studies and Analysis Flight at

HQ ACC is concerned about the value of analyzing the output from this study since many

of the processes and assumptions of the associated models are currently unknown.  They

desire a generic model that is reasonably simple to understand, easy to set up, and simple
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to run.  Of course, the model must capture the relevant aspects of the intratheater airlift

system in order to provide a useful answer. (Stieven, 1995)
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I.2.  Specific Problem

This research is guided by the primary assumption that the best model where the

processes are readily comprehensible and portrayed with sufficient accuracy is through a

deterministic approach.  In particular,  this research assumes that some amount of

aggregation can be obtained from the cargo requirements as they are currently formatted

in the time-phased force deployment data.  The TPFDD data can then be used in a linear

program to optimally determine the minimum required fleet to deliver the cargo.

Obviously, some of the real world constraints on the airlift system will not be explicitly

accounted for by such an aggregation.  For example, facility throughput, materiel

handling, and ramp space will be at best grossly modeled in an implicit manner.  This can

only be accounted for through the time dimension in the approach outlined in this thesis.

However, the simplification of optimally determining fleet size has an important benefit for

the analyst when compared to recent efforts at attempting this problem through

sophisticated simulation approaches.  When the Joint Staff conducted their Revised

Intertheater Mobility Studies (RIMS), they required over 400 runs of the MIDAS model

between October 1986 and April 1989 in order to determine airlift requirements. (Yang,

1995:4)
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I.3.  Definition of Research

The approach explores methods to capture the individual vehicle capacity of an

intratheater transportation network to optimize these fleets. A basic linear program was

investigated that modeled cargo, passenger, and medical evacuation requirements as

resources (right hand sides).  Vehicle capacities were modeled as technological

coefficients (A matrix).  Specifically, the research explored the use of a spreadsheet solver

(Microsoft EXCEL) to calculate the minimum number of C-130s needed to carry

required cargo, passenger, and aeromedical loads based on user-defined daily

requirements.  A methodology is desired where the user need only enter the daily

requirements for cargo (ton-miles), passengers, and aeromedical loads for a given scenario

and the expected capacity for C-130 aircraft, trucks, and 22-car trains.  The user should be

able to individually enter daily capacities for the respective vehicles, i.e., capacities can be

entered day by day.  Included in the capacity inputs are the number of daily cycles or trips

expected from a given mode of transportation.  The model is automatically formulated

based on these inputs. The model is solved using a spreadsheet solver and the results are

provided in graphs.  This spreadsheet model is formulated for a 20 day closure period

since a larger planning horizon exceeds the number of variables the solver can handle.

For larger closure periods, two or more formulations are entered and solved separately.

The model results were verified by other solvers and used as inputs for a parametric

analysis.
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Another approach involved a set-partitioning formulation of a Korean airlift

network to model the scenario. This model optimally determined the minimum number of

C-130s required for the scenario.  The set-partitioning model was based on determining

the optimal number of routes which satisfy cargo and time window constraints imposed

upon the nodes (onload/offload locations) of the network.  The model is based upon the

work found in the doctoral dissertation, “Network Optimization with Time Window

Constrained Routing and Scheduling” by Fan Yang completed in August, 1995.  A

summary of this research is found at Appendix A.

I.4.  Research Questions

The primary research question asks, “What is the minimum number of C-130s

required to achieve a desired closure profile for a given set of forces, support units, and

resupply in a Korean scenario?”   A secondary research issue is, “How do other modes of

transport, i.e., truck and rail, affect the C-130 fleet size when they are introduced into the

model?”  One reason the primary question is timely is the type of current models available

to airlift analysts in the Air Force.  Current models are based upon simulations that mimic

the movement of airlift and associated cargo based on certain rules.  They accept data

based on a fixed fleet size and address the question, “What is the closure profile for a

given set of forces, support units, and resupply given a fixed set of transportation assets?”

(Yang, 1995:9)

The data set for exploring this research question is notional.   The actual data is

classified, so this thesis identifies a methodology and model for the user who deals with

classified data.
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I.5.  Scope

An initial closure profile that is less than or equal to 20 days has been assumed.  A

force closure estimate should be used based on the appropriate operations plan (OPLAN).

This force closure estimate is defined as the amount of elapsed time from the departure of

the first aircraft from the load base to the arrival of the last aircraft at the offload base that

completes the deployment of the initial combat force (USAF AMS, 1992:410-7).

Sustainment airlift can begin before closure if the earliest units to arrive require such

support, but normally sustainment missions are thought of as beginning after closure.  It is

assumed that the peak C-130 usage occurs within the closure time frame.  It is further

assumed that the time windows and cargo requirements will be known prior to the

requirements study desired.  The only cargo considered will be in the category of bulk

cargo and oversize cargo.  Bulk cargo is anything that will fit on a standard 463L pallet

(88”x108”).  Bulk cargo fits on all types of airlift aircraft.  Oversize cargo is any single

item that will not fit on a 463L pallet and exceeds the bulk dimensions listed above, but

will fit on a C-130, C-141, or a C-5 aircraft. An example of oversize cargo would be a six-

passenger truck or a HMMWV (Highly mobile military wheeled vehicle).  Outsize cargo

will not fit on a C-130 and is not considered here. An example of outsize cargo would be a

tank or heavy artillery (USAF AMS, 1992:402-2).  These requirements are assumed to be

found in the TPFDD, which specifies the cargo and personnel requirement in the form of a

data file.  The TPFDD is generated with Joint Operation Planning and Execution System

software as part of the deliberate planning process used in developing an OPLAN for a

specific theater or contingency.  These are classified documents and form the “starting
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point” when a crisis action team actually begins to execute the deployment of military

forces in a contingency or war  (AFMAN 10-401, 1994)  (USAF AMS,1992:405-1-405-

10).  The idea of uncertainty in this process is conveyed by the   well-known military

adage that “no OPLAN has ever survived contact.”   Since the TPFDD is our best guess

for the scale of a possible contingency, the model will accept data from the TPFDD.

This study is further limited to generation of output data for a capacity model and

a corresponding parametric analysis.  A discussion of a more sophisticated approach that

explicity models routing with time window constraints is presented, but no data from this

model is analyzed.

Chapter II outlines the literature review conducted for this thesis and primarily

concerns the exploration of vehicle routing problems and example formulations from the

academic community and the military community.   Chapter III describes the methodology

used to address the research questions discussed previously.  This chapter consists of

descriptions of a spreadsheet application and a  parametric analysis approach using a linear

program formulation that allocates vehicles based on their associated capacities and

specified transportation requirements.  Chapter IV outlines a few examples to demonstrate

the input and output of the model.  Also included are brief descriptions of the data and

worksheets employed in the analysis.  An analysis of a potential scenario is given at the

end of the chapter.  The final chapter describes the assumptions and limitations of the

model and suggests further research.
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II.  Literature Review

The majority of the literature review concernes vehicle routing problems, as this

study involved an airlift network. The spreadsheet model presented in Chapter III is based

on a resources approach to linear programming and was motivated by modeling the daily

requirements of airlift and the airlift capacity available to move the daily requirements.

(Winston, 1994:71-112)  This basic model was expanded to cover twenty periods with

each period representing a single day.

A basic routing problem is easily stated as a set of nodes and arcs that must be

serviced by a fleet of vehicles.  In the basic problem, there are no restrictions on the order

or timing in which the nodes must be serviced.  The problem is to construct a low-cost,

feasible set of routes. Each vehicle is assigned a single route. A route is defined as a

sequence of locations that a vehicle visits and includes the service it provides. The routing

of vehicles is primarily a spatial problem, since no temporal restrictions are placed on the

problem  (Bodin, 1983:79).  An example of a basic routing problem is shown in Figure II-

1.  In this figure, the circles containing numbers and the rectangles containing depots

represent the nodes of a network.  The lines connecting the nodes are the arcs of the

network.  The entire set of nodes and arcs is called a graph.  These arcs can be given

direction, in which case the graph is called a di-graph.  Figure II-1 does not

show any directional arcs (Bazaraa et. al.,1990:420).
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                                    8                5
                     9

       1                                                           2             3

                                 Depot  A

                                 Depot  B

            7                                                 4

                                        6

Route 1:  Depot A - 1 - 9 - 8 - Depot A
 Route 2:  Depot A - 5 - 2 - 3 - Depot A

Route 3:  Depot B - 7 - 6 - 4 - Depot B

Figure II-1  Illustration of routes (Bodin, 1983:80)

A classic routing problem that demonstrates the mathematical simplicity of stating

such problems, along with the difficulties associated with their solutions, is the Traveling

Salesman Problem (TSP).   The TSP is based upon a network of nodes, arcs, and costs.

The graph could be named with the symbol “G”,  where G = [N, A, C] and N represents

the set of nodes, A represents the set of arcs, and C represents the set of costs for each

arc.  The cost is either the distance between a node i and node j or the cost of moving

between these nodes and is represented with the symbol “cij”.    The problem is to find the

minimum cost route starting from a given node and ending at that same node, visiting each

other node in the graph only once.  It is called a Traveling Salesman Problem because the

problem can be thought of as a salesman that must visit each of the cities in a set and
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return to his or her city of origin.  Obviously, the salesmen will want to do this by

traveling a minimum distance or at minimum cost  (Bodin, 1983:82).

The TSP is NP-complete, which means that an algorithm that solves such a

problem is not likely to be found whose solution contains a number of steps that can be

described by a polynomial.  All the algorithms that have been proposed encounter

problems with storage and running time when used for networks with more than about

100 nodes.  Proposed solution approaches are either hueristics, which give a feasible but

not necessarily optimal answer, or algorithms which give exact optimal solutions.  It is

only practical to find an optimal solution for small problems of less than 100 nodes.  One

formulation of the TSP is:  (Bodin, 1983:82-83)

xij = 
1 if arc i - j  in  the  tour

0    otherwise.





cij = +∞ for i = 1, 2, ..., n;  and i = j;

Minimize   c xij ij
j

n

i

n

==
∑∑

11

subject to

x bij
i

n

j
=
∑ = =

1

1 (j =  1, ,n)K                                                       (1)

x aij
j

n

i
=

∑ = =
1

1 (i =  1, ,n)K                                                       (2)

X = (xij) ∈ S                                                                        (3)

xij = 0 or 1       (i, j = 1, . . ., n)
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The symbol “S” represents a set that prohibits the situation shown in the following figure

where subtours occur in the solution:

Constraint (1) makes sure each node has an arc going to it.  Constraint (2) makes

sure each node has an arc leaving it.  We can see that these two constraints are satisfied by

Figure II-2, but this obviously does not satisfy the problem definition of visiting each node

and returning to the starting node.  The following formulations are three ways to ensure

subtours will not occur in the solution:

a)  S = {(xij):  xij
j Qi Q

≥
∉∈
∑∑ 1 for every nonempty proper subset Q of N };

b)  S = {(xij):  x Rij
j Ri R ∈∈
∑∑ ≤ −1 for every nonempty subset R of {2,  3, ,  n}K };

c)  S = {(xij):  yi - yj + nxij ≤ n - 1  for 2 ≤ i ≠ j ≤ n  for some real numbers  yi}.  (Bodin,

1983:83-84)

        2                  3                    4                   5

        1                                                  6

   Subtour 1                                  Subtour 2

Figure II-2  Example of Subtours

A look at approaches to airplane scheduling gives one application of vehicle

routing problems.  Federal Express Corporation was among the first company to use a
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computerized procedure for aircraft fleet scheduling. (Bodin, 1983:156)  A timetable is

changed every four to five weeks to take into account changes in demand, new cities,

seasonality factors, and so forth.  A matrix is used to make inputs.  The matrix gives the

estimated package count between each pair of cities and this count is converted to a

percent of aircraft capacity.  Each city is visited once.  A package leaves its origin via

aircraft, arrives at Memphis, Tennessee and is then delivered to its destination city via

aircraft.  Time windows specify the earliest time an aircraft can leave from a city of origin

and the latest time an aircraft can arrive at a destination with priority one packages.

Constraints limit the length of routes and the capacity of the aircraft.  Two routing

problems are solved.  One problem is for pickups and the other is for deliveries.  (Bodin,

1983:156)

The algorithm used for the Federal Express Problem follows:

Assume we have N cities;  city i has a known demand for packages to ship; and a time

window given by [ti , ti ]  in which service is permitted.

Step 0:  definition of the savings.  The savings for cities i and j being on the same route (j

follows i):       sij = d0j - dij    where  d0j is the travel time from the depot to city j and dij is

the travel time from city i to city j.  The savings are ordered:  s(1) ≥ s(2) ≥  . . . ≥ s(K) ≥ 0.

Step 1:  iteration step.  Suppose for the first S iterations we have r partial routes

R1, R2, . . ., Rr.  A savings is then randomly selected by using a uniform distribution from

the next t savings on the list.  This savings involves the joining of the partial route

beginning with city w to the partial route ending with city v.  If the partial route

beginning with city w can be feasibly attached to the partial route ending with city v then
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this attachment is made forming a new and longer partial route.  Feasibility means that all

time windows are satisfied, vehicle capacity (in terms of package count) is not exceeded,

and the length of the tour is not too long.  This step is repeated until the fleet size is met

or all savings are exhausted.

Step 2:  merge step.  The new solution is merged into the present best known solution

using the merge routine which uses an input of a set of feasible solutions.  The first

solution found is called the incumbent solution.  As subsequent solutions are found, they

are compared to the incumbent to determine if a reduced cost composite solution can be

found.  The rows of the two problems represent the legs of a route and the columns of the

problems are the pairings from the two solutions.

Step 3:  Steps 0, 1, and 2 are repeated until a satisfactory solution is found.  (Bodin,

1983:167)

In response to a Congressionally Mandated Mobility Requirements Study (MRS),

a method was developed in 1991 to determine the proper level and mix of lift assets

necessary to support US power projection needs into the 21st century.  The method used

two linear program (LP) models.  The first model was a multi-commodity network flow

model based on scenario specific requirements to move units and their personnel and

equipment.  The second model minimized late delivery in order to assess the impact of a

fixed but inadequate mobility mix.  The method was called the Mobility Optimization

Model (MOM)  (Wing, 1991:1).  The first model will be summarized here.

This method assumes a delivery schedule,  a set of units to be moved, lift asset

capacities, and cycle times of each asset.  It determines the minimum cost mix of lift
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assets that will close a force on time.  The problem is constrained by the available load

dates (ALDs) and the required delivery dates (RDDs) of the units to be moved.  It is

further constrained by throughput capabilities in the theater, a sustainment build-up

policy in theater, and an initial inventory of lift assets.  (Wing, 1991:3-4)  Note:  Cycle

time is  defined as the time that a lift asset requires to load, transit to the theater, offload,

and return to the US for its next possible assignment. (Wing, 1991:5)  All US bases were

aggregated into a single source node and all terminal destinations were aggregated into a

single sink node.  (Wing, 1991:6)  A flow constraint used in this formulation is given in

Chapter V and an interesting objective function coefficent is formulated as follows:

Annualized life cycle costs were determined for all lift assets with the equation:

D(j) = 
PROCOST j OPCOST j E LIFE j

E LIFE j

( ) ( ) ( )( )

( )( )

+ +
                                    (1)

• D(j) = annualized life cycle cost for lift asset j

• PROCOST(j) = procurement cost for lift asset j

• OPCOST(j) = annual operating cost of lift asset j

• E(LIFE)(j) = expected life of lift asset j

The annualized life cycle cost coefficient allowed the user to compare the costs for new,

used, and leased lift options.  The objective function equation is:

Min Z = D j NM j k PC PREPO
j k

( ) * ( , ) ( * )∑ ∑ +                                          (2)

• D(j) = cost coefficient as calculated in equation (1)

• PC = Prepositioning cost factor

• PREPO = Number of ships required for prepositioning
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• NM(j,k) = NEW(j,k) or new assets (j) required by the model.  (Wing, 1991:14)

Another very promising approach came from a dissertation by Dr. Edward F. Yang

of Washington University, Saint Louis, Missouri.  This work described a new mobility

analysis model called NETO that was formulated to address limitations of models

currently used by Air Mobility Command in airlift analysis.  The model consisted of a

network optimization engine with time window constrained routing and scheduling that

was based on an integer and combinatorial optimization methodology.  The optimization

engine is formulated as a Pickup and Delivery Vehicle Routing and Scheduling Problem

with Time-Window Constraints (PDPTW) which is solved by a set-partitioning

formulation, column generation and column elimination algorithm (SP-CGCE).  The

subproblem of the column generation is a Constrained Shortest Path Problem with pairing,

precedence, capacity, and time window constraints which is solved by dynamic

programming.  (Yang, 1995:1-143)
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III.  Methodology

Since the ACC Studies and Analysis Flight conducts a significant portion of its

analyses using  “quick look” approaches, a spreadsheet model was investigated that was

easy to set up and generated user-friendly output.  Another desirable feature of this

methodology was a “look through” logic where the decision maker could easily follow the

logic and processes involved in the model and analysis.  (Stieven, 1995)  Microsoft

EXCEL was chosen since Air Combat Command analysts are familiar with this software

and it is relatively easy to graph outputs from a solver solution.  Unfortunately, the

tradeoff for simplicity is a lack of sophistication in the model.  The capacity approach does

not consider the problem of routing vehicles and terminal facility capacities.  Elements

such as service times at the onload or offload locations and parking ramp space are not

explicitly modeled.  Routing of individual aircraft and the scheduling of aircrews are not

directly modeled with this approach either.  Since this is a linear programming approach,

more decision variables and new constraints could be formulated to address the

aforementioned limitations while not permitting violation of the new constraints.

However, this would make the problem prohibitively large and too complex for a quick

look study.  These issues are discussed further in Chapter V.

It is important to note that the total cargo, passenger, and aeromedical

requirements should be viewed as “chalks”.   A chalk is US Army terminology for a load

of unit cargo and personnel that is planned to fit on one airlift mission.  A US Army

planner would ultimately determine how many and what type of chalks are required to
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move a unit in a contingency.  For example, the planner may determine his/her unit

requires forty C-130 chalks, twelve C-141 chalks, and three C-5 chalks to deploy.  This

view of a chalk begins with dividing up unit equipment and personnel to fit load plans for a

particular aircraft.  An Air Force planner would view chalks in terms of weight, since it is

convenient to think of airlift capacities in terms of weight.  If the total requirement of

cargo tonnage over 20 days is 112,500,000 pounds, we could divide this into chalks that

would fit a particular vehicle.  If our vehicle is a C-130 with a capacity of 25,000 pounds,

we could divide our chalks into 25,000 pound increments and this would yield a total of

4,500 chalks.  This translates into how many C-130s would be needed to move all the

chalks of cargo for the entire 20 days if each C-130 made only one sortie in the entire

planning horizon.  Obviously, a more refined answer would be divide these chalks into

daily requirements; otherwise, a possible solution would be to use 4,500 aircraft to haul

everything in one day.   The linear program will ideally divide the chalks among the

various modes of travel that are modeled and divide them among each of the 20 days

according to the capacity of each vehicle expected on a particular day.   It should also be

noted that the “chalk” concept assumes complete divisibility of the loads, a condition

which does not always hold.  It therefore understates vehicle requirements as some

fractional loads must be flown.  For instance, US Army planners would plan actual chalks

for their unit equipment and personnel that may not completely use all the available

capacity of a given vehicle.

Another aspect not explicitly modeled is the physical airlift network.  This would

be a detailed list of airbases and their characteristcs, such as ramp space, onload and
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offload capability, and maintenance rates of servicing aircraft.  The physical airlift network

constrains the number of aircraft that can be handled at any one time, i.e., there are a

limited number of possible air bases to handle aircraft and each base has a limited amount

of parking space and cargo handling ability.  In addition, planners put available dates and

desired delivery dates on cargo and personnel they want moved during the development of

the TPFDD. (AFM 10-401, 1994)  This translates into a distributed demand for airlift over

time.  There will be surge periods and slack periods based on whatever military needs for

cargo and personnel, i.e., military capability, were foreseen when the planners developed

the TPFDD. A sobering comment that aptly demonstrates the potential problem of

neglecting this aspect of the problem came from Dr. Abbe of the US Army Concepts

Analysis Agency in her GDAS study, “What will NOT improve the deployment:  (1)

Adding more vehicles without matching build-up of facility capability [and] (2) Using

alternate air and seaports without expansion of the supporting road and rail facilities.”

(Abbe, 1995:15)

This approach to the quick look study is one of daily vehicle capacity versus daily

transportation requirements.  The user must be able to “break out” the requirements data

from the time-phased force deployment data (TPFDD).  The spreadsheet requires that the

first twenty days of requirements be broken into cargo tonnage per day, passenger counts

per day, and aeromedical evacuation patient counts per day.   This information can be

obtained from the classified TPFDD document and broken out with various sorting codes

available at the Air Mobility Command.  (Shirley, 1995)  The input page also allows the

user to determine the capacities for C-130 aircraft, trucks, and several train vehicle types.
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In addition, the capacity is multiplied by the number of trips expected from a particular

vehicle for total daily capacity.  The airlift requirements are linked to the right-hand-sides

of a linear program formulation and the capacities are linked to the A matrix of

coefficients in the linear program.   It should be noted that ton-miles are used as the unit of

measure for the cargo requirements in the study.  This is a common metric used in airlift

capability analysis and helps capture the overall distance factor.  If two scenarios use the

same exact amount of cargo in tons, but one demands airlift travel over an average of one

hundred miles while the other requires travel of an average of three thousand miles to

move the cargo, then using only a tonnage figure would not distinguish the scenarios.  An

example is the Congressionally Mandated Mobility Study of 1983 that arrived at a goal for

all US airlift capability of 66 million ton-miles (mtm).  (USAF AMS, 1992:430-1)

The number of vehicles used to meet the overall move requirements (cargo,

passengers, and aeromedical patients) is represented in the spreadsheet model by the

variables X1C_t, X1P_t, X1M_t, X2C_t, X2P_t, X2M_t,  X3C_t, X3P_t, and X3M_t .

The variable X1C_t is the number of C-130s used on day t to transport cargo or it could

be any generic airlifter, depending upon the capacity entered on the input page of the

spreadsheet (see Figure IV-1).   The  variable X2C_t is the number of trucks used on day t

to transport cargo and the variable X3C_t is the number of 22-car trains used on day t to

transport cargo.   The capacity of each vehicle, i, to haul cargo is represented by the

coefficient at(ic).  The capacity of each vehicle, i, to haul passengers is represented by the

coefficient at(ip).  The capacity of each vehicle, i, to haul aeromedical (C-130 aircraft) or

medical evacuation patients (trucks and rail vehicles) is represented by the coefficient at(im).
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The basic formulation is given below and in Figure III-1.

Variables:     X1C_t      Number of  C-130s or generic airlifter required on day t loaded 

 with cargo.

         X1P_t     Number of C-130s or generic airlifter required on day t loaded with

            passengers.

                    X1M_t    Number of C-130s or generic airlifter required on day t loaded with

                       casualties.

                    X2C_t     Number of trucks required on day t loaded with cargo.

                    X2P_t      Number of trucks required on day t loaded with passengers.

                    X2M_t     Number of trucks required on day t loaded with casualties.

                    X3C_t      Number of 22-car trains required on day t loaded with cargo.

                    X3P_t      Number of 22-car trains required on day t loaded with passengers.

                    X3M_t     Number of 22-car trains required on day t loaded with casualties.

                                                        t = 1, . . . , n

        Xp          Maximum number of airlift aircraft used in the planning  period.

        Xt           Maximum number of trucks used in the planning period.

        Xr           Maximum number of 22-car trains used in the planning period.

        wp           The objective function coefficient for Xp.  This can be varied to 

                       indicate the subjective priority of the airlift mode of transportation 

                       in relation to other modes of transport.  In other words, this is the 

                       weighting factor for planes.



24

       wt             The objective function coefficient for Xt.  This can be varied to 

                        indicate the subjective priority of the truck mode of transportation 

                        in relation to the other modes of transport.

       wr             The objective coefficient for Xr.  This can be varied to indicate the 

                        subjective priority of the rail mode of transportation in relation to 

                        the other modes of transport.

Constraint number (1) in Figure III-1 on page 26 ensures that the cargo

requirement is met.  This means that enough vehicles must be assigned with sufficient

capacity to move the required cargo for a given day using the following formulation:

at(1c)(X1C_t) + at(2c)(X2C_t) + at(3c)(X3C_t)  ≥ btc ;  t = 1,. . ., n

This formulation will form n  rows where each row indicates a day’s cargo activity.  A

single row or constraint from this formulation is called a “day t cargo” constraint.  Each

row will have three nonzero coefficients that represent possible transportation via airlift,

truck, and/or rail.  The total amount of cargo (in ton-miles) that must be moved on a given

day t is represented by the right-hand side value of btc.    For example, b1c = 741,255

would  indicate that on day one of the deployment, 741,255 ton-miles of cargo must be

delivered within the theater.   The symbol “at(1c)” represents an A matrix coefficient and is

the capacity of a C-130 assigned to carry cargo on day t.  The subscript t indicates which

day’s requirements are being moved and the subscript (1c) indicates which type of vehicle

is moving the cargo.  For example,  a1(1c) = 13,500 indicates that the capacity of vehicle

type one (C-130 airlift) on day one is 13,500 ton-miles.  Likewise, a1(2c) = 3,240 indicates

that the capacity of vehicle type two (trucks) on day one is 3,240 ton-miles.  The
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coefficients and right-hand-side are loaded into the formulation from an input cell as

shown in Figure IV-1.

Constraint number (2) in Figure III-1 ensures that the passenger requirement is

met. This means that enough vehicles must be assigned with sufficient capacity to move

the required passengers for a given day using the following formulation:

at(1p)(X1P_t) + at(2p)(X2P_t) + at(3p)(X3P_t) ≥ btp;  t = 1,. . ., n

This constraint set also consists of n rows.  A single row from this formulation is called a

“day t passenger” constraint.  The A matrix coefficients are similarly expressed, except

that the number now represents a vehicle’s capacity to move passengers.  Likewise, the

right-hand side in constraint (2),  btp  is now the number of passengers that must be moved

on day t.

Constraint number (3) in Figure III-1 ensures that the aeromedical patient

requirement is met. This means that enough vehicles must be assigned with sufficient

capacity to move the expected aeromedical patient requirement for a given. The

constraint’s formulation is:

at(1m)(X1M_t) + at(2m)(X2M_t) + at(3m)(X3M_t) ≥ btm;   t = 1,. . ., n

This formulation also forms n  rows in the A matrix and the coefficients now represent a

vehicle’s capacity to move casualties and the right-hand-side is the expected number of

casualties for a given day that must be moved.

Constraint number (4) uses the Xp variable as a means to find the maximum

number of C-130s used at any given time for all of the periods involved in the model’s
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planning horizon, which is set by “n”.  Thus, constraint (4) will form n total constraints,

one for each day:

X1C_t + X1P_t + X1M_t  ≤ Xp;    t = 1,. . ., n

As an example, if the variable Xp = 50, then the greatest number of C-130s that are

scheduled for any day in the period of  n days is fifty.  So, for each day in the scenario,

fifty or less C-130s were used.

Constraints (5) and (6) are identical in concept and formulation to constraint (4),

except that constraint (5) uses the variable set associated with trucks and constraint (6)

uses the variable set associated with trains, yielding the maximum number of trucks and

trains used, respectively.

Constraint number (7) is an optional constraint that can be employed to place a

maximum or upper limit on the number of C-130s used on a given day.  This constraint is

written:  Xp ≤ bUL C-130 .   For example, if a maximum of 145 C-130s could be used for a

contingency, then set bUP C-130 = 145 and the constraint is:  Xp ≤ 145.   Constraint numbers

(8) and (9) are identical in concept and differ in that (8) places an upper limit on trucks

and (9) places an upper limit on 22-car trains.

Constraint number (10) is an optional constraint that can be employed to place a

minimum or lower limit on the number of C-130s used on a given day.  This constraint is

written:  Xp ≥ bLL C-130 .   For example, if one wanted to see the effect of employing at

least fifty C-130s on at least one day of a contingency, then set bLL C-130 = 50 and the

constraint is:  Xp ≥ 50.  Constraint numbers (11) and (12) are identical in concept and



27

differ in that (11) places a lower limit on trucks and (12) places a lower limit on 22-car

trains.

Constraint (13) is used to force a percentage of the transportation requirements to

be allocated to C-130 airlift transporting cargo and is called a “must air” constraint for

cargo:

a X C tt c
t

n

( ) ( _ )1
1

1
=
∑ ≥ αc btc

t

n

=
∑

1

;  where 0 ≤ αc ≤ 1

A similar formulation can be used for passengers and medical evacuation patients as

shown by constraints (14) and (15).  The right-hand-sides multiplies a desired fraction

with the total sum of daily requirements for either cargo, passengers, or medical

evacuation patients.  The user sets the fraction  α  depending upon what portion of the

requirement must be carried via C-130.  The left hand side sums the number of C-130s for

a particular day times the capacity for the C-130.  If the constraint is being used for cargo,

then the capacity at(1c) is the cargo capacity for a C-130.  If the constraint is being used for

passengers, then the passenger capacity is entered as the coefficient at(1c).

Constraint (16) is used to specify an upper limit for an operating budget for C-130

aircraft.  Since this is an Air Force sponsored thesis, it is assumed the user of this

formulation is not interested in the operating budgets of the other modes of

transportation.  This constraint is formulated as follows:

(Ute rate)(hourly operating cost) ( _ _ _ )X C t X P t X M t
t

n

1 1 1
1

+ +∑
−

 ≤ (Budget)

A utilization rate (Ute rate) is entered as the number of hours a C-130 operates per day.

An hourly operating cost is entered as the number of dollars per hour.  This allows the left
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hand side to represent the operating cost of all the C-130s being used by a given solution,

once the variables X1C_t, X1P_t, and X1M_t have been determined.  A budget is entered

as the right-hand-side and represents the allowable budget for a contingency of n days

that the user must operate under.  As a sidenote, the value used for a peacetime planning

utilization rate for C-130 aircraft is 10 hours and the hourly cost of this vehicle is

$2,215/hour for Department of Defense uses (USAF AMS, 1992:204-6).

Minimize  z =  wpXp + wtXt + wrXr

Subject To

at(1c)(X1C_t) + at(2c)(X2C_t) + at(3c)(X3C_t)  ≥ btc ;  t = 1,. . ., n;  Cargo constraints        (1)

at(1p)(X1P_t) + at(2p)(X2P_t) + at(3p)(X3P_t) ≥ btp;  t = 1,. . ., n;   Passenger constraints    (2)

at(1m)(X1M_t) + at(2m)(X2M_t) + at(3m)(X3M_t) ≥ btm;  t = 1,. . ., n; Casualty constraints  (3)

X1C_t + X1P_t + X1M_t  ≤ Xp;        t = 1,. . ., n;         Maximum C-130s constraints   (4)

X2C_t + X2P_t + X2M_t  ≤ Xt;        t = 1,. . . ,n;         Maximum trucks constraints      (5)

X3C_t + X3P_t + X3M_t  ≤ Xr;       t = 1,. . ., n;       Maximum rail constraints           (6)

Xp ≤ bUL C-130                                                   C-130 upper limit constraint       (7)

Xt ≤ bUL Trucks                                                  Truck upper limit constraint        (8)

Xr ≤ bUL Rail                                                      Rail upper limit constraint          (9)

Xp ≥ bLL C-130                                                   C-130 lower limit constraint     (10)

Xt ≥ bLL Trucks                                                    Truck lower limit constraint     (11)

Xr ≥ bLL Rail                                                      Rail lower limit constraint         (12)

a X C tt c
t

n

( ) ( _ )1
1

1
=
∑ ≥ αc btc

t

n

=
∑

1

  ;   where 0 ≤ αc ≤ 1; C-130 “must air” cargo constraint   (13)
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a X P tt p
t

n

( ) ( _ )1
1

1
=
∑ ≥ αp btp

t

n

=
∑

1

;     0 ≤ αp ≤ 1;  C-130 “must air” passenger constraint      (14)

 a X M tt m
t

n

( ) ( _ )1
1

1
=
∑ ≥ αm btm

t

n

=
∑

1

;   0 ≤ αm ≤ 1;   C-130 “must air” casualty constraint     (15)

(Ute rate)(hourly operating cost) ( _ _ _ )X C t X P t X M t
t

n

1 1 1
1

+ +∑
−

 ≤ (Budget)               (16)

{X1C_t, X1P_t, X1M_t, X2C_t, X2P_t, X2M_t, X3C_t, X3P_t, X3M_t,

   Xp, Xt, Xr} ∈ ℜ+

Figure III-1  Spreadsheet Formulation

There are 9(n) + 3  variables and a total of 6(n) + 10 possible constraints in the

formulation.  The limit constraints; (7), (8), (9), (10), (11), and (12), can be omitted if the

user wishes to know the unconstrained minimum number of vehicles required to move a

given amount of cargo, passengers, and aeromedical patients.   If the user wants to put a

numerical limit on one or more of the vehicles, then the appropriate limit constraints

would be employed in the formulation.  For example,  if the user wanted to limit the C-

130s to between 50 and 150, he or she would include constraints (7) and (10).  The user

would set bUL C-130 = 150 in constraint (7) and bLL C-130 = 50 in constraint (10). Various

combinations could be employed depending on the scenario desired by the user.

Likewise, the “Must Air” constraints and the Budget constraint can also be omitted if

they are not pertinant to the analysis at hand.

The nature of the problem obviously requires an integer answer.  Excel requires
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an excessive amount of time to solve formulations with a large number of variables

constrained to integer values.  Consequently, for a rough cut look, the integer requirement

has been relaxed. The EXCEL solver is set up to use nonnegative real numbers as the

domain for the variables.  The solver dialogue box takes approximately one to two

minutes to display and the problem takes approximately five minutes to solve.  The

problem could be recast into an integer format that is acceptable for input into a more

powerful solver such as CPLEX.  The example case has been cast in MPS format for

this purpose. This example integer formulation was solved using CPLEX on a SPARC

10 workstation in 282.25 seconds using 56,213 iterations and 20,000 nodes.  MPS format

is a long established format for mainframe linear programming systems and is therefore a

convenient format to use for this problem.  (CPLEX, 1994:81)  This format can be used

for many other solvers besides CPLEX, although CPLEX uses at extended version of

the standard MPS format which may not be accepted by older linear programming codes.

The extended version formulated for CPLEX was recast into a basic MPS format which

is accepted by all linear programming codes.
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IV. Data Description and Analysis

IV.1.  Excel Spreadsheet Formulation

The main motivation for the spreadsheet formulation was to allow the user to input

the required data in a worksheet that was as self-explanatory as possible.  The worksheet

would link the cells containing the input data to a worksheet used for solving the problem.

This worksheet would be formatted in a way that was suitable for input into the

spreadsheet solver.   The next page shows an example of the input fields for the

spreadsheet formulation:
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Table IV-1  Spreadsheet Model Input Page

Thesis Model:  C130/Rail/Truck
Korean Scenario soldier:

Operating Costs C-130 data Avg.wt(#)
Total Per hour C-130 ute rate: 10 Upper 200

C-130 4.00E+06 2215 speed: 270 Limit
productivity factor 0.40 1000
cargo capacity (tons) 13 Lower

Pusan-DMZ: 210 avg. dist. 105 ton-mile capacity: 13500 Limit
TPFDD Data Cycles (trips) / day 2 0

i Type Tons or # Ton-miles # pax per chalk 90
day 1 Cargo: 7060 741255 pax capacity per day 180

Pax: 4794 pax cap. ton-miles 19440
Medical: 1240 # patients per chalk 70

day 2 Cargo: 8191 860005 Aeromed. cap./ day 140
Pax: 5782 Aeromed. cap. (tons) 15120
Medical: 1409 % cargo that must go by C-130 0

day 3 Cargo: 8177 858621 % passenger "must air" 0
Pax: 3838 % medevac "must air" 0
Medical: 1266

day 4 Cargo: 8005 840552 Truck data Upper 
Pax: 4745 Trips per day: 2 Limit
Medical: 1389 capacity (tons): 20 1000

day 5 Cargo: 7386 775491 miles per trip: 90 Lower
Pax: 4164 Availability: 0.9 Limit
Medical: 1527 ton-mile capacity: 3240 0

day 6 Cargo: 8762 920041  # pax per truck 45
Pax: 4676 daily pax capacity 90
Medical: 1464 # patients per truck 7.5

day 7 Cargo: 6072 637554 Medevac capacity 15
Pax: 4287
Medical: 1607

day 8 Cargo: 6562 688998 Rail data Upper 
Pax: 4936 (1 train = 22 flatcars) Limit
Medical: 1487 Trips per day: 2 1000

day 9 Cargo: 5838 613014 capacity (tons) 1210 Lower
Pax: 5290 miles per trip: 100 Limit
Medical: 1472 ute rate 0.75 0

day 10 Cargo: 8060 846263 ton-mile capacity 181500
Pax: 4539 (1 train = 22 passcar)
Medical: 1637 Trips per day: 2

day 11 Cargo: 7852 824506 pax capacity (count) 413
Pax: 5210 daily pax capacity 826
Medical: 1443 daily medevac cap. 200

day 12 Cargo: 5796 608594 (1 train = 22 gondolas)
Pax: 5220 Trips per day: 2
Medical: 1491 capacity (tons) 1100

day 13 Cargo: 7154 751196 miles per trip 100
Pax: 3672 ute rate 0.75
Medical: 1622 ton-mile capacity 165000

day 14 Cargo: 6168 647684 (1 train = 22 boxcars)
Pax: 4553 Trips per day: 2
Medical: 1605 capacity (tons) 1100

miles per trip 100
ute rate 1
ton-mile capacity 220000

The spreadsheet input page allows the user to build the linear program without

having to keep track of the model structure.  The appropriate cells from Table IV-1 are
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linked in the spreadsheet to the appropriate cell in the model formulation.  The cells of the

model formulation are actually used to solve the problem and have been entered into the

EXCEL spreadsheet solver.    It should be noted that  Table IV-1 only shows fourteen

days of input,  while twenty days are used for the results provided in this chapter.

The input data listed in Table IV-1 is notional.  The requirements for this notional

scenario have been set to about 4,600 personnel per day, a cargo flow of approximately

7,000 tons per day, and a total casualty rate of around 1,400 per day.  The input data was

created using random draws from a normal probability distribution.  Assuming a Korean

scenario would require a military effort commensurate to the Gulf War of 1990, the

average daily personnel requirement was used since approximately this number of

personnel were moved by intratheater airlift in the Gulf War of 1990.  The casualty rate is

from the author’s memory of predictions made prior to the Gulf War of 1990 and from the

casualties one could expect if currently deployed forces in South Korea could not suppress

the initial North Korean attack.  The intratheater cargo requirement comes from a study of

Desert Storm intratheater cargo lift which averaged about 7,000 tons per day  (USAF

AMS, 1992:430-1).  Daily cargo requirements were randomly drawn from a normal

probability distribution with a mean of 7,000 and a standard deviation of 15%.  Daily

personnel requirements were randomly drawn from a normal probability distribution with a

mean of 4,644 and a standard deviation of 15%.  The first two weeks of daily casualties

were drawn from a uniform probability distribution with a low value of 1,215 and a high

value of 1,643.  The remaining casualty figures for days 15 to 20 came from a uniform

probability distribution with a low value of 275 and a high value of 371. The vehicle
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capacities are reasonable numbers.  The data under the cell labeled “C-130 Data” comes

from the Air Mobility Command’s USAF Air Mobility School Learning Guide and Air

Force Pamphlet 76-2 “Airlift Planning Factors.”   The capacity

of a C-130 is figured using an aircraft utilization rate, aircraft planning speed, a

productivity factor, and a  cargo capacity accepted as a planning figure.  These factors are

used for a “ton-mile” capacity based on the common use of this performance measure in

airlift capability calculations (USAF AMS, 1992:403-1).  Straight tons could also be used;

however, a ton-mile calculation allows utilization rates and productivity factors to be

incorporated into the problem.   A ton-mile figure also implicitly incorporates the size of

the theater by using an “average travel distance of lift” as a factor with the amount of

cargo to be moved.  A way to see this idea is to imagine one ton of cargo requiring

transportation.  If the cargo must be moved 200 miles, then 200 ton-miles are needed.  If

the cargo must be moved 400 miles, then 400 ton-miles are needed.  As can be seen, the

range of an airlift aircraft can also be implicity represented by a capacity expressed in

ton-miles instead of just weight alone.

The utilization (UTE) rate is the total hours of capability per aircraft a fleet of

airlift aircraft can produce in a day expressed in terms of Primary Authorized Aircraft

(PAA).  For example, if we expect to need 4,000 hours per day of flying time with the C-

130 fleet and we have a fleet of 400 C-130s (PAA = 400), then the UTE would be 10

hours.  A UTE rate of 10 hours is normally used for notional planning, and it should be

noted that actual UTE rates are classified.  A productivity factor is based on historical data

and measures what part of the UTE rate is actually spent with a load in the back of the
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aircraft (USAF AMS, 1992:403-2).  In Table IV-1, we use a number of 0.4 to indicate

that 40% of the UTE rate occurs with a load and the other 60% is an aircraft flying

empty.  These numbers happen to be the recommended percentages used for peacetime

planning of intratheater airlift (USAF AMS, 1992:403-2).  This would account for

positioning and depositioning legs.  Normally, the onload and offload bases are not the

locations an aircraft launches from or recovers to at the end of a mission.  Before entering

numbers into these capacity cells, the analyst would be well advised to make a thorough

study of Air Force Pamphlet 76-2, because use of maximum capability numbers could

yield an overly optimistic result.  Note that wartime UTE rates must be determined from

classified sources and entered here in order to conduct a proper wartime analysis.  The

model uses the figure from the cell labeled “ton-mile capacity” which incorporates the

factors listed above it.  The passenger and aeromedical/medical capacities are just the

upper limit of passengers or patients that would be carried in one C-130 leg multiplied by

the expected number of such trips the planner or analyst expects the fleet to make on

average.

The truck capacities in Table IV-1 come from an unclassified  briefing called

SUMMITS obtained from Major John Stievens at Air Combat Command on 12 October

1995.

The rail capacities come from simulation studies conducted by Dr Elizabeth N.

Abbe of the US Army Concepts Analysis Agency, Bethesda, MD for a mobility conference

held at the Air Force Institute of Technology in May, 1995.  From a letter dated 14

November 1995, Dr Abbe stated that a published report of the mobility study is
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forthcoming in a few months.  The simulation is called GDAS or the Global Deployment

Analysis System, which is a high resolution, multi-modal entity model for the

comprehensive simulation of end-to-end force deployment.  The capacities used for rail

in this study were for 22-car train entities where all the cars of an entity were of the same

type. (Abbe, 1995:1)  This study adopted the same convention for convenience.  The user

may want to modify this approach to modeling rail capacities.

The right-hand-sides for the linear program are linked to Table IV-1 in the

columns adjacent to the column with the “Day t” labels.  These numbers would be entered

by the user from a breakout of the TPFDD or based on expected sustainment rates

required for the contingency under study.  Obviously, the most suspect numbers in the

table are the cells labeled “Medical.”  The analyst would have to consider all the classical

factors of warfare and the expectations of the leadership before arriving at these casualty

figures.
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The following is a chart of the daily cargo requirements as broken out from

the spreadsheet input page (This data is notional as previously described and is not

classified):

Daily Notional Ton-Mile Requirements
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Figure IV-1  Daily Cargo Requirements (Notional Data)

Below is a chart of the daily passenger requirements as broken out from the

spreadsheet input page.  (This data is notional as previously described and is not

classified):
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Figure IV-2  Daily Passenger Requirements (Notional Data)
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Figure IV-3 is a chart of the daily medical evacuation  requirements as broken out

from the spreadsheet input page. (This data is notional as described previously and is not

classified):
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Figure IV-3  Daily Medical Evacuation Requirements (Notional Data)

MPS input files were needed to enter the spreadsheet model data into the

CPLEX and LINDO solvers. CPLEX was used to verify the solver used in

EXCEL. LINDO was used to conduct the parametric analysis in the following

sections of this chapter.

Another data file of interest was created to see the effects of a peak in demand for

cargo.  Figure IV-4 shows a graph of this particular data.  Note that there is a surge of

demand occuring in week one.  The peak demand was also taken from random draws on a

normal probability distribution with higher means used to affect the surge.
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Daily Notional Ton-Mile Requirements (Demand 
Surge in Week One)
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Figure IV-4  Daily Cargo Requirements (Notional Data)  - Surge Problem

IV.2. Spreadsheet Parametric Analysis

The LINDO solver was the only application available to the author that could

accomplish a parametric analysis on a linear program.  A parametric analysis was

accomplished for both the objective function coefficients and the right-hand-side values.

First, the method used for conducting a parametric analysis on the objective function

coefficients is addressed.

LINDO essentially performs a parametric analysis on objective function

coefficients by optimizing different objective functions as specified within the model.  This

is analogous to choosing different objective functions of interest and running an individual

optimization for each objective function.  By representing the objective function with a

single variable, an objective function can be expressed as a constraint.  Then the model is

solved using a single variable in the objective function that is also found within the
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constraint.  Below is an example of how to formulate the objective function Minimize Z =

Xp + 2Xt + 5Xr with a single variable in the objective function:  (LINDO, 1991:44)

MIN  Z

SUBJECT TO

Z - Xp - 2Xt - 5Xr = 0

In order to include numerous objective functions, one would specify all the desired

objective functions in the form of constraints and change the variable in the objective

function appropriately before solving the problem.  For example, one could add the

following objective functions to the model above:

(1) Minimize Z = 2Xp + Xt + 11Xr

(2) Minimize Z = 4Xp + Xt + 15Xr

(3) Minimize Z = Xp + 10Xt + 20Xr

The functions (1), (2), and (3) will be represented by the variables Y, X, and W

respectively and modeled as follows:

MIN Z

SUBJECT TO

Z - Xp - 2Xt - 5Xr = 0

Y - 2Xp - Xt - 11Xr = 0

X - 4Xp - Xt - 15Xr = 0

W - Xp - 10Xt - 20Xr = 0
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If the objective function (1) needed to be solved, the expression “MIN Z” would be

changed to read “MIN Y”.  If the objective function (2) were to be used, the expression

would then become “MIN X”.  (LINDO, 1991:44-45)

Before candidate objective functions are explicitly written into the model as stated

above, a preliminary parametric analysis on objective function coefficients was

accomplished by varying the coefficients in the EXCEL spreadsheet model.  The results

are shown in Table IV-2 below.

Table IV-2  Parametric Analysis of Objective Function

Coefficients of Objective Function
Variable:

Max Number of vehicles on any given
day for:

Xp Xt Xr C-130 Trucks Trains
1 1 1 0 0 18.78
1 1 5 42.19 0 4.75
1 1 10 42.19 0 4.74
1 1 15 105.89 0 0
1 1 20 105.89 0 0
5 1 5 0 0 18.78
5 1 10 10.06 62.30 4.95
5 1 15 10.06 62.30 4.95
5 1 20 10.06 62.30 4.95
5 1 25 10.06 62.30 4.95
5 1 30 10.46 62.07 4.89
5 1 35 10.46 62.07 4.89
5 1 40 10.46 62.07 4.89
5 1 45 10.46 62.07 4.89
5 1 50 10.46 62.07 4.89
5 1 55 10.46 62.07 4.89
5 1 60 10.46 335.91 0

As can be seen from Table IV-2, the solution is sensitive to the choice of objective

function coefficients.  If all the decision variables are equally weighted, as in the first line
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of Table IV-2, then the model allocates everything to 22-car trains for this notional

example.  This makes sense when one considers that 22-car trains have the largest

capacity per vehicle and the objective is to minimize the number of vehicles used.  It has

also been the author’s experience in working with the US Army that they would prefer to

move on rail vehicles with other factors being equal.  Unfortunately, other factors may

become paramount to the decision maker which makes the use of rail more costly or

“expensive.”  This situation is represented by differing the weights of the decision

variables in the objective function.  Note that when the objective coefficient for rail

becomes sufficiently large, everything is allocated to C-130s.  A look at some possible

factors that must be captured by the objective function coefficients will illustrate the

greatest challenge of the spreadsheet model.

Some factors that could impact the weight of the decision variables are:  1)

locations of rail terminals v. US Army assembly areas v. airlift terminals;  2)  Speed of the

respective transportation;  3) the criticality of transportation requirements during various

portions of the planning horizon; 4)  Vulnerability of transportation routes to enemy

interdiction operations with respect to each mode of travel; 5)  tactical considerations that

cause a decision maker to prefer one mode of travel over another; and 6) the flexibility of

a mode of travel, i.e., how easy is it to reroute a vehicle to a new destination.  This thesis

does not thoroughly investigate a systematic method for determining an appropriate

method for deciding the weights of the objective function for this model.   This would be

an area for future research.
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To conduct a parametric analysis of the right-hand-sides, LINDO provides a

command called “PARA” that invokes a routine which varies a selected row right-hand-

side from the current value to a value input by the user.   The output of this routine shows

the change in optimal objective value for each basis generated.  Each basis is generated

within the range of right-hand-side values selected and the row selected after executing the

PARA command in LINDO.   Each change in objective function value is accompanied

by a change in basis.  In this manner,  the user  can automatically trace out the effect of

varying the right-hand-side over a wide range  (LINDO, 1991:42-44).

Since the application envisioned in this thesis implies varying any number of right-

hand-side values simultaneously, the analysis in this section made use of a device called a

D-vector before using the PARA command in LINDO.  A constraint was written into

the model as D = 0.  This would constitute the row whose right-hand-side would be varied

with the PARA command and adds an extra variable, D, to the problem.   In addition, a D-

vector in the form of an added column to the problem was constructed.  (LINDO,

1991:44)  It is important to note that the values entered in this column as coefficients of

the variable D are chosen arbitrarily.  Their values are determined depending upon what

changes in right-hand-side values the user desires to study.

IV.3. Analysis of a Potential Scenario for Parametric Analysis

This analysis assumed the decision maker had chosen the objective function

weights represented by the equation, Minimize Z = 5Xp + Xt + 30Xr.  As can be seen

from the weights of this equation, rail transport was six times as expensive an asset as C-
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130 airlift and thirty times as expensive as truck transport.  In turn, the C-130 mode was

five times as expensive as the truck mode.

Before the parametric analysis of the right-hand-sides is presented, solutions of

various realizations are presented.  The first set of solutions shows the number of vehicles

assigned when the original data set (Figures IV-1, IV-2, and IV-3) is used.  The next set

of solutions shows the number of vehicles assigned when the surge cargo data set in

Figure IV-4 is used in place of the data in Figure IV-1.  This set of solutions is labeled the

“Surge Problem.”  The third set of solutions shows the number of vehicles assigned when

constraint (13) is introduced such that all cargo must be moved by airlift vehciles (see

Figure III-1).  This set of solutions has the label “Must Air” for cargo.  The fourth set of

solutions shows the number of vehicles assigned when the budget constraint (16) is

employed to restrict operating costs to $4 million.
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Figure IV-5  Daily C-130s Used - Original Problem
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In Figure IV-5, the maximum number of C-130s used on any given day is 10.46,

i.e., Xp = 10.46.  Note that this value is reached on days 2, 3, 4, 6, and 10 only and that

the number of vehicles assigned decreases dramatically after day 14.  To understand this

solution better, it is instructive to examine a graph where the type of loads carried are

broken out as in Figure IV-6.  Notice that most of the C-130s carry casualties.  From

Figure IV-3, it is seen that the medical evacuation requirements also drop off dramatically

after day 14.

C-130 Usage by Type Load

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 3 5 7 9 11 13 15 17 19

Day

N
um

be
r 

of
 C

-1
30

s 
U

se
d

C-130s carrying cargo

C-130s carrying pax

C-130s carrying med

Figure IV-6  C-130 Usage by Type Load
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Daily Truck Usage 
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Figure IV-7  Daily Trucks Used - Original Problem

The maximum number of trucks assigned on any given day is 62.07, i.e., Xt =

62.07.  As shown from Figure IV-8, the majority of trucks are assigned to carry

passengers and only on one day are trucks assigned to carry cargo.  Also note that where

trucks carry casualties, less trucks are assigned to carry passengers.

Truck Usage by Load Type
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Figure IV-8  Truck Usage by Load Type
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Daily Train Usage  
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Figure IV-9  Daily 22-Car Trains Used - Original Problem

The maximum number of 22-car trains used for any given day is 4.89, i.e., Xr =

4.89.  In Figure IV-10, it is seen that most of the 22-car trains are assigned to carry cargo

with only a small fraction carrying passengers on days 15, 17, and 19.  Close to one 22-car

train is assigned to medical evacuation on eight days, but again, the major operation for

trains in this scenario is cargo transportation.

Train Usage by Load Type
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Figure IV-10 Train Usage by Load Type
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If the capacities and objective function weights are examined, it becomes apparent

that this scenario will always give the cargo to trains and medical evacuation primarily to

C-130s, while the trucks generally get assigned to carry passengers for this scenario’s

data set.

Even though the trains are much more heavily weighted than the other modes of

transportation, and therefore more expensive, their relative capacity for cargo is so much

greater than the other vehicles that the objective function is minimized by assigning cargo

mainly to trains.  However, in the case of passengers and medical evacuation

transportation, the capacity of trains is not large enough relative to trucks and C-130s to

overcome the weight assigned trains.  Therefore, the objective function is minimized when

vehicles other than trains are used for passengers and casualties.  The same type of relative

interaction occurs between trucks and C-130s when the model assigns vehicles to carry

passengers and casualties.  Here it is seen that C-130s are five times as costly to assign as

trucks, so the capacity of a C-130 would have to be relatively large relative to a truck in

order to get assigned to provide transportation.  The C-130s get assigned many medical

evacuation missions because it has over nine times more medical evacuation capacity than

a truck.  When it comes to passengers, however, the C-130 has only twice the capacity of

a truck and this cannot overcome the weighting of the objective function.

The solution sets that follow this paragraph are not broken out by types of loads;

however, they follow the same general pattern as described above.  The primary difference

is due to the governing constraint introduced or the change in input data used.  They are

listed to demonstrate effects of varying constraints or input data.  Although not shown in
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this thesis, it must be pointed out that all these solution sets have multiple optimal

solutions when it comes to the portion of the planning horizon’s solution where maximum

vehicle assignments are not made.  Each solution to a problem will have the exact same

value for Xp, Xt, and Xr, but they may differ as to the number of vehicles assigned on

days where this maximum assignment is not made.
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SOLUTION USING DATA FOR CARGO DEMAND SURGE IN WEEK ONE:

Daily C-130 Usage (Ca rgo Demand Surge in Week 
One)
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Figure IV-11  Daily C-130s Used - Surge Problem

Here, Xp = 11.48.  This is a little larger than the value in the original problem.

Daily Truck Usage (Cargo Demand Surge in Week 
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Figure IV-12  Daily Trucks Used - Surge Problem

Xt = 47.64, a smaller maximum on trucks than in the original problem.
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Daily Train Usage (Cargo Demand Surge in Week 
One)
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Figure IV-13  Daily Trains Used - Surge Problem

Xr = 8.82, which is considerably larger than the original problem when the relative

capacity is considered.  It is not surprising that the trains increased the most with an added

requirement for cargo incorporated into the problem.  As noted before in the original

problem, with the weights of the objective function we are using, there is a propensity for

the model to assign virtually all the cargo to trains. Therefore, an increase in cargo should

create an increase in trains assigned.
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SOLUTION USING 100% MUST AIR CONSTRAINT FOR CARGO:

Daily C-130 Usage (100% of Ca rgo moves by airlift) 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 3 5 7 9 11 13 15 17 19

Day

N
um

be
r 

of
 C

-1
30

s

Figure IV-14  Daily C-130s Used - "Must Air" for Cargo

Xp = 61.94 in Figure IV-14.  As can be seen above, the “Must Air” constraint for

cargo dramatically increases the number of C-130s assigned.  In this case, the objective

function weights give most of the medical evacuation missions to C-130s, but the

introduction of the “Must Air” constraint also gives virtually all of the cargo missions to

C-130s.  Had the constraint been formulated with an individual constraint for each day, all

the cargo would go to C-130s, so the surplus that allowed trains to get a portion of the

cargo was due to formulating all variables into one constraint, i.e., one constraint covers

all the periods modeled in the problem.  While enough C-130s are assigned to carry the

weight of the cargo demand, some of the daily cargo constraints still had a surplus, i.e.,

they were nonbinding.  The trains picked up the surplus on days that C-130s did not carry

all cargo.
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Daily Truck Usage (100% of cargo moves via airlift) 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 3 5 7 9 11 13 15 17 19

Day

N
um

be
r 

of
 T

ru
ck

s

Figure IV-15  Daily Trucks Used - "Must Air" for Cargo

Xt = 56.96 in Figure IV-15.

Daily Train Usage (100% of ca rgo moves via airlift) 
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Figure IV-16  Daily Trains Used - "Must Air" for Cargo

Xr = 1.15 in Figure IV-16.
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SOLUTION FOR BUDGET CONSTRAINT OF $4 MILLION:

Daily C-130 Usage (B udget Constraint of $4 Million)  

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 3 5 7 9 11 13 15 17 19

Day

N
um

be
r 

of
 C

-1
30

s

Figure IV-17  Daily C-130s Used - Budget Constraint

Xp = 10.46 in Figure IV-17.  This is the same value as the original problem.  Even

though $4 million is less than the operating costs required for the solution to the original

problem, it was not sufficiently less to cause the maximum C-130s assigned on any given

day to become less than the original problem.  The total number of C-130 missions over

the entire period, however, was in fact less than the original problem.

Another way to force C-130s to carry all the cargo is to set the upper limit for

trucks and trains to zero.  Of course, C-130s would also get all the passengers and the

medical evacaution demands, as well.
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Daily Truck Usage (Budget Constraint of $4 
Million)  
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Figure IV-18  Daily Trucks Used - Budget Constraint

Xt = 62.07 in Figure IV-18.  This is the same as the original problem.

Daily Train Usage (Budget Constraint of $4 Million)  
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Figure IV-19  Daily Trains Used - Budget Constraint

Xr = 4.89 in Figure IV-19.  This is the same as the original problem.
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SCENARIO OF THE PARAMETRIC ANALYSIS:

The analysis of interest in this demonstration was chosen to be the effect on

required transportation assets of moving varying amounts of the load requirement from

the first week of the contingency to the second week.  A motivation for this analysis was

the observation of long delays of all modes of transport going to Bosnia-Herzogovina due

to weather.  In this vein, the decision maker could have responded with the question,

“What amount and mix of transportation is required if the weather forecast suggests we

could lose our ability to move equipment and personnel in the first week of the

contingency, while maintaining the same closure date?”  To conduct this particular

analysis, the D-vector or change vector was structured so that cargo, passenger, and

medical evacuation requirements would be transferred from the first week to the second

week in proportion to the value of D.   In other words, as the value of D went from zero

to one, a corresponding amount of requirements transferred from the first week to the

second week.  For example, a D value of 0.51 indicates that 51% of the week one

requirements were transferred to week two.  The requirements for the other days of the

contingency remained the same.
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Parametric Analysis:  Min  5Xp + 1Xt + 30Xr
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Figure IV-20  Graph:   Parametric Analysis  of a Potential Scenario

As one would expect, the objective function increases as the cargo, passenger, and

medical evacuation requirements are shifted from week one to week two.  Since the graph

in Figure IV-20 plots the value of the objective function, which in turn is based on the

variables Xp, Xt, and Xr, it increases as week two demands increase.  This value is based

on the maximum number of vehicles used on any given day and the shift in demand from

week one to week two insures that week two has the highest demand of any part of the

planning horizon.   Consequently, the variables Xp, Xt, and Xr will reach their maximum

values in week two.  This can be seen in the graph shown in Figure IV-21 below.
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Parametric Analysis: Vehicles Broken Out
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Figure IV-21  Parametric Analysis for a Potential Scenario (Objective removed)

The maximum number of C-130s (Xp), Trucks (Xt), and 22-car trains (Xr)

increases as the amount of week one demand is shifted to week two.  How this breaks out

at various points along the horizontal axis is shown in Figure IV-22 and IV-23.  Figure

IV-22 shows the assignment of vehicles when 50% of the demand is shifted from week

one to week two.  Figure IV-23 shows the assignment of vehicles when 100% of the

demand is shifted from week one to week two.
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Vehicles Used When 50% of Requirements Moved From 
Week One to Week Two
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Figure IV-22  Transportation for a 50% Transfer - Week 1 to 2

In Figure IV-22, we see the number of vehicles assigned to week one has

decreased when 50% of the demand is shifted to week two.
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Vehicles Used When 100% of Requirement is Moved From 
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Figure IV-23  Transportation for a 100% Transfer - Week 1 to 2

As expected, the number of vehicles assigned to week one is zero in Figure IV-23

since 100% of week one’s demand is moved to week two.  The maximum number of

vehicles assigned is approximately double the number in the original problem.

Consequently, we can say that we require twice the number of vehicles when the demand

is shifted from week one to week two, even though the total amount of demand remains

unchanged.  In order to use the same amount of vehicles as the original problem, we

would have to extend the closure date by a week to make up for the week lost due to

weather.
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V. Conclusions and Recommendations

The spreadsheet model generated an approximate “ball-park” answer to the

question of how many C-130s are required for a given movement requirement.   The chief

advantage to this approach is its simplicity and the ease by which the user can set the

model up and manipulate the parameters for a parametric analysis.  To properly evaluate

the answer generated, it was necessary to understand the limitations involved with this

particular formulation.  As with any mathematical model, reality was not perfectly mapped

onto the solution vector.  Even the approach outlined by Dr. Edward F. Yang rested on

simplifying assumptions, although it captured considerably more detail in its solution

process.

One problem of the capacity approach in formulating this problem is that an even

capacity is applied in every instance.  The reader will readily agree that not all loads will be

exactly 25,000 pounds.  Since some loads will be necessarily less than the capacity stated

in the problem,  this formulation may yield an unrealistically small number of vehicles

required.  An educated “fudge” factor could be applied that was based on empirical data

from historical records of the average load size.  The user would then alter the number

provided by the spreadsheet model accordingly.  The reader should understand, however,

that the average load size is a random variable and will vary somewhat for every

deployment, exercise, and contingency.  Only if the same exact units at the same exact

force level were deployed in each instance would this number be a constant.   Another way

to approach this problem would be to try a Monte Carlo
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technique for the capacities involved in this problem.  Random draws from a probability

distribution could be made on the capacities for each vehicle and applied to a statistically

valid number of runs in the formulation in Figure III-I.  Again, the probability

distribution would have to be based on empirical data.

Another problem with this formulation is it does not allow mixed loads.  For

example, a C-130 might carry several Highly Mobile Military Wheeled Vehicles

(HMMWV), a 463L pallet with baggage, and ten passengers.  This model would only

allow for a full load of cargo, which would be quantified by weight, or a full load of

passengers.  Combinations of different type loads are not represented.

The assumptions and simplifications of the spreadsheet model are recounted below

to allow the reader a better understanding of what the model can and cannot do:

(1)   Transportation requirements are aggregated into daily requirements.  There

probably will be no distinct dividing point in a real contingency, since transportation

activities will occur continously twenty-four hours a day and vehicle cycle times may

cause vehicle availability, and therefore capacity, to vary from day to day despite a costant

fleet size.  When working in reverse using this logic to figure a fleet size, this aggregation

of daily requirements assumes all required vehicles move that day’s requirement within

that day and nothing “spills over” into the next day.

(2)  The model assigns vehicles in a manner that assumes the entire vehicle

capacity is used for each vehicle, i.e., partial loads are not considered among vehicles for a

given day’s vehicle usage.
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(3)  Mixed loads are not considered. Vehicles are either dedicated to cargo

movement, passenger movement, or medical evacuation but no combinations between

these load types are considered.

(4)  Routing of vehicles are not considered.  The length or duration of routes could

impact the number of vehicles that must be scheduled against a particular transportation

requirement.  This would depend on the individual routes of each vehicle assigned.

(5)  The capacity of onload and offload facilities are ignored.  If  a facility cannot

load quickly enough or if “parking” is too limited, a queue of vehicles could develop.  If

the system used at the facility for load handling was inadequate, a similar result ensues.

Insufficient refuel and maintenance capability also can impact the throughput of a

facility.  This would represent a bottleneck in the network and could constrain vehicles

scheduled as well as  place an upper limit on the amount of cargo, passengers, and medical

evacuation moved through that facility.

(6)  The user must be able to break out the transportation requirements into daily

numbers for input into the model.

(7)  The user must know the capacities and utilization rates of the vehicles under

study.

(8)  Vehicle crew scheduling is indirectly considered in the utilization rate.  If the

crew ratio is low enough, the number of vehicles that can be generated is limited.  This

will lower the utilization rate.  The crew ratio is defined as the total number of  crews

divided by the total number of vehicles.
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The approach that Dr. Edward F. Yang uses alleviates of the first four limitations

and makes the problem posed by (6) and (7) a little easier to handle.  The model that Dr.

Yang developed “reads in” the transportation requirements by directly using the data

from an appropriate TPFFD.  (Yang, 1995:91)  Still, the limitation posed by (5) was not

addressed by this model or any others that are known to the author.  It should be noted

that limitation (5) requires significant additional modeling to be adequately captured and

also represents a great deal of uncertainty.  The models studied by the author generally

handled this aspect of the network implicitly by how other variables were defined.  For

instance, Dr. Yang handled this in two ways: (1)  by assuming the data in the TPFDD

accounted for facility throughput and (2) by inserting a service time representing the

length of time a vehicle spent at a facility undergoing maintenance, fueling (if required),

and loading operations.  (Yang, 1995:xv, 23, 67)

An improvement to the spreadsheet model would be to add a Visual Basic module

that converts the model formulation into MPS format.  The author spent a considerable

amount of time manually converting the spreadsheet model into MPS format used to

conduct the parameter analysis.

Additional constraints could be added to represent the flows of vehicles.  This

would constitute including cycle times in the model so that vehicles are made availabe for

another mission when finished with a previous mission.  This follows the idea of a balance

equation, flow in = flow out.  For example, the following equation can be used

(Wing,1991:7-8):
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LI (i, j, k, l) is a variable representing the lift by lift asset (j) for unit (i) and cargo

type (l) on day (k);

AV(j, k) is a variable representing a lift asset (j) available for assignment on

day  (k);

CT(j) is a variable representing the cycle time (in days) for a lift asset;

MJO(j, k) is a variable representing the initial inventory of lift assets;

NEW(j,k) is a variable representing the new lift required on day (k);

T(i, j, k) are the allowable combinations of i, j, and k for starting lift missions

defined by ( (k ≥ ALD(i) ) and (k ≤ (RDD(i) - HCT(j) )  where ALD(i) is the allowable

load date for unit (i); RDD(i) is the required delivery date for unit (i); and HCT(j) is the

half cycle time for lift asset (j).   (Wing, 1991:7-8)

If the user desires a more detailed analysis with less aggregation, a model such as

the one cited by Dr. Edward F. Yang (NETO) should be obtained.  A model that seems to

fall about midway between the spreadsheet model and the NETO model is the Mobility

Optimization Model (MOM), which was the source for the constraint listed in the

preceding paragraph.

The most necessary improvement to the spreadsheet model of this research is to

develop an algorithm to assign appropriate objective function coefficients to the decision

variables.  The solutions have been shown to be sensitive to the choice of decision
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variable weights.  If the necessary information could be factored into the decision

variable weights, then the objective function would realistically measure decision maker

preferences and the priority of one mode of travel versus the others.  Then the solution

could be used to say that it is the optimal mix of transportation based upon the factors

included in the objective function coefficients.  This would tell the decision maker the

necessary trade-off between one mode of transportation and another.  This is a crucial

aspect of conducting intratheater airlift analysis.  There exist competing modes of

transportation that can carry the necessary units and their personnel and equipment within

the Korean scenario, so each mode must be considered in turn when justifying the required

fleet size for C-130 airlift assets.
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VI. APPENDIX A:  Summary of Network Optimization
Dissertation

The two major problems with an optimization approach to solving the type

problem posed by this thesis are 1) complexity and 2) modeling accuracy.   (Yang,

1995:14)  An example of the complexity issue is the traveling salesman problem (see

Chapter II).  This problem loosely falls under the heading of a combinatorial optimization

problem.  If such a problem had many cities to visit, it would be impractical to explicitly

enumerate all of the possible combinations and even implicit enumeration with techniques

such as “branch and bound” would be computationally expensive.  For this reason,

heuristic methods, which quickly lead to a “good” solution (but not necessarily optimal)

are often used.  (Winston, 1994:519-527)   The modeling accuracy problem was alluded

to previously when the limitations of the spreadsheet model were explained.  The real

world is inherently complex and possesses factors which are nonlinear and are

characterized by varying degrees of uncertainty.  (Yang, 1995:14)   Notwithstanding

these limitations, recent breakthroughs in optimization techniques have made linear

programming more broadly applicable, especially in the areas of Mixed Integer

Programming and computational aspects.  (Yang, 1995:15)

The optimization technique explored in this appendix is based upon the work of

Dr. Edward F. Yang’s dissertation completed in August 1995.  He is essentially modeling

the airlift network by specifying every possible route that an aircraft could take and

choosing the optimal set of routes.  Instead of enumerating each possible route before
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optimizing the model, the routes are picked by passing a series of feasibility tests that

check for route feasibility, allowable pick up and delivery times, and load compabibility

with the transportation vehicle.  To accomplish this, the first task is to transform an

operations network into an optimization network.  The operations network consists of all

the relevant data such as air bases, air routes, onloads, offloads, cargoes, transportation

vehicles, scenario, movement requirements, other logistics factors, etc.  The optimization

network is a labeled digraph suitable for use in mathematical programming.  (Yang,

1995:19)  To build the optimization network, the digraph topology must be built and

labels must be computed.   The topology consists of nodes in the network that correspond

to customers requiring onload and offload.  The labels consist of information such as the

cost of an arc between nodes, the required delivery or pickup time for a cargo load, and all

of the physical nodes that make up the arc.  (Yang, 1995:17-21)

The optimization network is represented by the notation, G(N, Λ).  The symbol

“N” refers to the nodes or locations (air base, terminal, etc.) in the network and the

symbol “Λ” refers to the arcs or routes between the nodes in the network.  There are four

types of nodes in “N”.  The symbol “S” represents starting nodes or origination points for

a given set of vehicles.  The symbol “P+” represents pickup or onload nodes, the symbol

“P-” represents delivery or offload nodes and the symbol “T” represents ending or

termination nodes.  An arc between two sets of nodes is represented by the symbol “x”,

i.e., the arcs between the pickup nodes and the delivery nodes is symbolized by “P+ x P-”.

A complete digraph is formed by P+ x P-.   Only S arcs go from S to P+ and only T arcs
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go from P- to T.  The symbol “P” represents all the pickup and delivery nodes, i.e., P = P+

x P-.  In like manner, N = S ∪ P ∪ T  and Λ = S x P+ ∪ P+ x P- ∪ T.   (Yang, 1995:19)

Figure VI-1  The Optimization Network (Yang, 1995:22)

Figure VI-1 shows a pictorial representation of a generic optimization network,

G(N, Λ).  Within the pickup nodes, P+, and the delivery nodes, P-, there are a total of n

customers (or requirements) indexed by i.  A pickup location of a customer i is associated

with a node i and the respective delivery location is associated with a node n+i .  The node

i can also be designated by the symbol “+i ” and the node n+i  can be designated with the

symbol “-i” as in Figure VI-1.  The starting node is designated as node 0 and the

termination node is designated by node 2n+1, i.e., S = {0} and T = {2n+1}.    Therefore,

N = {0, 1, . . . , n+1, . . . , 2n, 2n+1} and the node set P = P+ ∪ P-  is made up of the

pickup node set such that P+ = {1, 2, . . ., n} and the delivery node set such that

P- = {n+1, n+2, . . . , 2n}.  (Yang, 1995:21-22)
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The remaining labeling information is found from load information, vehicle

information, and vehicle capacity information.  A customer i will demand that di  units be

moved from node i to node n+i .  A pickup time window can be established for node i and

is denoted by [ai, bi], where ai is the earliest time a load can be picked up and bi is the

latest time a load can be picked up.  Similarly, a delivery time window is described by the

notation [an+i, bn+i].  The window  [a0, b0] is the time window for the vehicle’s departure

from the departure base, node S, and [a2n+1, b2n+1] is the time window for the vehicle’s

arrival back at the recovery base, node T.   The set of vehicles made available to move the

load requirements is represented by “V” where V = { 1, 2, . . ., |V|}.  These vehicles are

indexed by the symbol “ν”.  The symbol D  represents the capacity of each vehicle.

(Yang, 1995:21-22)

The problem is modeled as a basic vehicle routing problem (VRP).  This approach

uses the Set-Partition Model to formulate the VRP.  Consider Ω the set of all feasible

routes r, and let δir  be a binary coefficient such that:

δir = 
0

1

:

:

node i is not on route r

node i is on route r





     Let  cr
*   be the optimal cost of route r and xr, a

binary variable such that xr =  
0

1

:

:

route r is not picked

route r is picked





   in the optimal solution.

The problem is then formulated as in Figure VI-2.
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minimize  c xr r
r

*

∈
∑

Ω

subject to   δ ir r
r

x =
∈
∑ 1

Ω

    ( i ∈ V\{0} )

                xr ∈ {1,0}  (r ∈ Ω)

Figure VI-2 General Set-Partition Model  (Yang, 1995:51)

In this manner, each column can be thought of as one possible route and each row can be

thought of as associated with a vertex or node excluding the node of origination, 0.  The

symbol “V” represents the set of vertexes in figure IX-2 and is equivalent to the symbol

“N” mentioned earlier.  Elsewhere, it will represent the set of vehicles as described

previously.  (Yang, 1995:51)

With some minor adjustments, the set-partition formulation in Figure VI-1 can be

recast for the digraph that was defined as G(N, Λ).    The column coefficients are

represented by the symbol “δr” and are defined as:   δr = [δir]nx1 ,   where

δir = 
0

1

:

:

if node i is not on route

if node i is on route
r

r

ρ
ρ





i ∈ P+ .

The symbol  “ρr”  represents a feasible route in G(N, Λ).  It is a non-cyclic path that

originates from S and terminates at T while satisfying pairing constraints, precedence

constraints, capacity constraints, and time window constraints.  (Yang, 1995:66)  If we

define xij as a binary route flow variable such that:

xij = 
1

0

if the feasible route r goes directly from i to j

if the feasible route r does not go directly from i to j





   (i, j) ∈ Λ



72

then we can define ρr  with the formulation in Figure VI-4 (Yang, 1995:67)::

           x xij
j N

j n i
j N∈

+
∈

∑ ∑− =, 0 ,    i ∈ P+                                  (pairing constraints)

            Ti + si + ti, n+i ≤ Tn+i ,       i ∈ P+                           (precedence constraints)

RT

x T s t T i j P

x T t T j P

x T s t T i j P

ij i i ij j

j j

i n i i i n n
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, ,

,
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= ⇒ + + ≤ ∈
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= ⇒ + + ≤ ∈
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,

0 0 0

2 1 2 1 2 1

                                        (time window constraints)

           

x Y d Y i P j P

x Y d Y i P j P

x Y d Y j P

ij i j j

ij i j j

j j j

= ⇒ + = ∈ ∈

= ⇒ − = ∈ ∈

= ⇒ + = ∈










+

−

+

1

1
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, ,

,

                       (load progression)

           0 ≤ Yi  ≤ D  ,    i ∈ P+                                              (capacity constraints)

Figure VI-3 Feasible Route Formulation   (Yang, 1995:67)

Now we can redefine the variable xr found in Figure VI-2 based upon the

formulation of a feasible route in Figure VI-3.  Then

xr = 
0

1

:

:

if the feasible route is not selected in the solution

if the feasible route is selected in the solution
r

r

ρ
ρ





  ,    r ∈ {r| ρr ∈ Ω}

In this version of the set-partitioning formulation, the column coefficients, δr ,  and the

cost coefficients, cr , are not explicitly available.  They must be obtained by finding the

corresponding feasible routes through the formulation in Figure VI-3. (Yang, 1995:68)

The column coefficients are found by a column generating algorithm that is constructed
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from a shortest path problem with constraints.  It basically solves the formulation in Figure

VI-3.  (Yang, 1995:72)  The cost coefficients are found by the equation cr = c xij ij
i j( , )∈
∑

Λ

.

The manner in which we define cij determines the nature of the problem.  For the purposes

of this study, this component of the cost coefficient will be defined in a way that causes

the objective function to minimize the number of vehicles used.  In this case,

cij = 
t K if i

t if i

ij

ij

+ =
≠





0

0
   where some constant K is added for the portion of the route, x0j .

In  a similar manner that was used for the spreadsheet model, a limiting constraint can be

added to the model to ensure the total number of vehicles used will not exceed some

number, m.  The constraint would look like x mr
r ∈
∑ ≤

Ω

 .  As one can imagine, the number

of feasible routes, and hence, the number of columns δr  in |Ω| can be very large.  This is

why a column generation method is preferable than enumerating all the feasible routes and

solving the set-partitioning problem to integer optimality.  (Yang, 1995:68)

Dr. Yang used a modified version of the Bellman-Ford Dynamic Programming

Algorithm to solve a Constrained Shortest Path Problem.  This is the algorithm which

generates the columns for the set-partitioning formulation described above, δr .  This is a

method which expands from node to node while meeting a series of feasibility tests that

check for the constraints in Figure VI-3.  In order to understand the tests in the algorithm,

a few variables and parameters must be defined:

ρα
k j( ) :      the αth route in all routes that start at S and end at j with k arcs.

            P jk ( ) :     the set of all routes that start at S and end at j with k arcs, so that
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                                                  P j jk k( ) ( )= ρα
α
U

            h jk
α ( ) :      the cost of route ρα

k j( )

             T jk
α ( ) :     the arrival time at j of route ρα

k j( )

             Y jk
α ( ) :     the vehicle load at node j along route ρα

k j( ) .

Stage k is defined as a state in which any of the paths constructed at this point have

exactly k arcs from the optimization network G(N, Λ).  As depicted in figure IX-4,  node i

is expanded from stage k-1 to stage k to reach node j.  The routeρ β
k i−1( )  and cost h ik

β
−1( )

lead to node i and node i is expanded to node j with an additional cost of ~cij   to get

ρα
k j( )  if certain feasibility tests are satisfied.  (Yang, 1995:81)

                             
h j jk k

γ γρ− −1 1( ) / ( )

 S                                                           j

                                                       
~cij

         
h i ik k

β βρ− −1 1( ) / ( )

                                                             i

 Figure VI-4  Stage k-1 to k   (Yang, 1995:82)

The feasibility tests are as follows:

For pairing and precedence constraints

if  j ∈ P+  and  j ∈ ρ β
k i−1( ) ,  then the expansion from i to j for ρα

k j( )  is not

feasible;
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if  j ∈ P- , and  j - n ∉ ρ β
k i−1( ) ,  then the expansion for ρα

k j( )  is not feasible;

For time window constraints

T jk
α ( )  = max{aj , T i s tk

i ijβ
− + +1( ) }

if  T jk
α ( ) > bj  then the expansion to ρα

k j( )  is not feasible;

For capacity constraints:

Y j
Y i d j P

Y i d j P
k

k
j

k
j

α
β

β

( )
( ) ,

( ) ,
=

+ ∈

− ∈







− +

− −

1

1

if  Y jk
α ( )  > D ,  then the expansion to ρα

k j( )  is not feasible;  (Yang, 1995:82)

Otherwise, the expansion from i to j is made and ρα
k j( )  is constructed as follows:

ρα
k j( ) = ρ β

k i−1( )  ∪ {j}

P jk ( ) = P jk ( )   ∪  ρα
k j( )

h jk
α ( ) = h ik

β
−1( )  + ~cij                     (Yang, 1995:83)
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          for k = 1, 2n+1 (for each stage k)

for each node  j ∈ P ∪ T

    for each node  i ∈ δ
− ( )j

      for each β of route 
ρ β

k ki P i− −∈1 1( ) ( )

            Test Feasibility

            Store the new route ρα
k i( )

                   next β

                next i

            next j
              (free k-1 stage data)

       next  k

Figure VI-5  Constrained SPP Algorithm  (Yang, 1995:83)

Preprocessing can be conducted to eliminate any potential infeasible or inferior paths as a

way to keep the number of stored paths as small as possible.  For a specific node (except

for node T) all feasible k-arc paths at stage k should be stored.  A present feasible path

could become infeasible at later stages.  At node T, either the shortest path or the p

shortest paths can be stored.  When constructing a path with k arcs, only the paths with k-

1 arcs are involved.  Paths with a different number of arcs do not need to be stored.  Store

the paths with k-1 arcs only.  (Yang, 1995:84)
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